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1 Introduction 

We study the problem of defending a target such as a stadium or a large gathering 
place with multiple access paths. In practice, the notion of “layered defense” is 
commonly used to describe the idea that we have an outer perimeter where we 
first seek to capture dangerous entities (vehicles, people, cargo), then perhaps a 
middle perimeter or perimeters where we do the same thing using different methods 
and perhaps information gathered from the outer perimeter, and then an inner 
perimeter where we again use different methods and information gathered from 
earlier perimeter defense. Thus, as vehicles approach a stadium, we might do license 
plate reading; in a middle layer or layers we use radiation detectors or behavioral 
detection of patrons after they have parked their cars; then in an inner layer we 
use metal detection through wanding or walkthrough magnetometers or where we 
inspect bags or pat-down patrons. We seek to make this idea of layered defense 
precise in an abstract, simplified way. 

We speak abstractly of “sensors” at each layer of defense, but understand that 
our “sensors” could be physical sensors but also tests of different kinds such as 
behavioral observation. Our approach is based in an increasing literature that deals 
with inspection processes using a number of potential tests, for example at ports of 
entry. In the past few years numerous techniques for sensor optimization of port-of-
entry inspection have been explored in the literature [1, 5–9, 12–14, 16, 17]. Several 

T. Asamov · E. Yamangil · E. Boros 
Rutgers Center for Operations Research, New Brunswick, NJ, USA 

P. B. Kantor · F. Roberts (�) 
CCICADA Center, Rutgers University, New Brunswick, NJ, USA 
e-mail: paul.kantor@rutgers.edu; froberts@dimacs.rutgers.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
B. Goldengorin, S. Kuznetsov (eds.), Data Analysis and Optimization, Springer 
Optimization and Its Applications 202, 
https://doi.org/10.1007/978-3-031-31654-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31654-8protect T1	extunderscore 1&domain=pdf

 885 55738
a 885 55738 a
 
mailto:paul.kantor@rutgers.edu
mailto:paul.kantor@rutgers.edu
mailto:paul.kantor@rutgers.edu

 10715 55738 a 10715 55738 a
 
mailto:froberts@dimacs.rutgers.edu
mailto:froberts@dimacs.rutgers.edu
mailto:froberts@dimacs.rutgers.edu
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1
https://doi.org/10.1007/978-3-031-31654-8_1


2 T. Asamov et al.

authors have reported numerical results that demonstrate significant improvement 
over straightforward inspection approaches [1, 6, 7, 12, 13, 16]. In line with existing 
practices, most researchers have assumed that the vast majority of the inspected 
items and people are perfectly legal and only a very small proportion of the incoming 
flow is harmful. Under such circumstances, the sensor operating cost (though not the 
capital cost) is usually only a small fraction of the overall cost of the inspection 
operation. The bulk of the total cost and time spent is attributed to a thorough 
inspection procedure that is performed on potential suspicious items and individuals. 
Such a situation is usually encountered in airport security checkpoints, border 
crossings, maritime port inspection stations, large sports stadiums, etc. 

In mathematical terms, the problem of layered site security is quite different from 
optimizing a set of sensors searching for illegal cargo at a port-of-entry. Unlike 
much of the existing inspection optimization work which considers two distinct 
populations of inspected items, i.e. legal and illegal, in our model we only consider 
the latter. We work under the assumption that we can incorporate the processing 
cost of occasional encounters of legal traffic into the overall cost curve for detecting 
contraband. 

2 Mathematical Model 

To develop our ideas, we have formulated a model of a perimeter defense of the 
target with two layers of defense where we have a limited budget for surveillance 
and we need to decide how much to invest in each layer and where to invest it if 
there are several locations where we might do inspection in each layer. Defense at 
the outer layers might be less successful but could provide useful information to 
selectively refine and adapt strategies at inner layers. Arranging defense in layers 
so that decisions can be made sequentially might significantly reduce costs and 
increase chance of success. Monitoring at an outer layer could not only hinder an 
attacker but could provide information about the current state of threat that could 
be used to refine and adapt strategies at inner layers. There is a complex tradeoff 
between maximizing the cost-effectiveness of each layer and overall benefits from 
devoting some efforts at the outer layer to gathering as much information as possible 
to maximize effectiveness of the inner layer. 

To give a stylized abstract version of what we have in mind, consider Fig. 1, 
where we show a target in the middle, threats arrive via two inner channels and each 
is reachable from two outer flows of vehicles, patrons, etc. 

Fig. 1 An abstract model of 
layered defense showing a 
target in the middle, threats 
arriving via two inner 
channels, and each reachable 
from two outer flows of 
vehicles, patrons, etc.
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We concentrate in this paper on the problem with two layers of defense, where 
each security layer has a number of sensors placed on possible paths of incoming 
illegal flow of vehicles and/or patrons. Inner layers are composed of sensors that are 
used to detect units that have managed to infiltrate outer layers undetected. Every 
interior sensor is connected to one or more sensors in the immediately preceding 
outer layer in the sense that it is responsible for backing up those sensors, i.e., the 
goal of the interior sensor is to discover traffic which has remained undetected by 
those outer sensors. In order for an illegal unit to penetrate the system, it would 
need to remain unnoticed at all layers of inspection. We denote the set of sensors 
in the internal layer of defense with I , and the set of sensors in the external layer 
with J . We assume that sensors in the set I share a limited total resource budget X 
and sensors in the set J share a limited total budget Y . More subtle models allow 
one to make decisions about how much budget to allocate between the inside and 
outside layers. Our objective is to develop optimization methods to determine the 
optimal allocation of resources to security sensors in such a manner that the expected 
detection rate of incoming threats is maximized. For modeling purposes we employ 
the following assumptions:

• There exists only one type of violation that we are protecting against.
• The expected number of contraband units on each incoming path is a known 

parameter. For the outermost perimeter sensor j , we denote the incoming 
contraband flow with . Fj .

• For each sensor .i ∈ I , located at the inside security layer, we know the function 
.Dx

i (x), which specifies the detection rate at the sensor for contraband items if 
the total amount of resources made available to the sensor is x, and similarly 
for each .j ∈ J we know the detection function .Dy

j (y). In this paper we assume 
that the detection functions are specified as concave increasing piecewise linear 
functions. Thus, we do not require the detection functions to be differentiable 
everywhere, which is an important property of our method. We also assume that 
the resources are normalized to take values between 0 and 1.

• All sensors at a given layer share a limited common resource. For example, 
an outside perimeter could be supported by a fixed number of infrared motion 
detectors or license plate readers, while an inside perimeter could consist of 
walkthrough magnetometer tests or security guards conducting wanding of 
patrons. 

Our goal is to allocate the total outside resources among individual sensors and 
allocate the total inside resources among individual sensors in order to maximize 
the detected illegal flow. Thus we arrive at the following mathematical formulation:
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.

max
x,y

∑

i∈I

⎧
⎨

⎩

⎛

⎝
∑

j∈N(i)

Fj · D
y
j (yj )

⎞

⎠ + Dx
i (xi)

⎛

⎝
∑

j∈N(i)

Fj (1 − D
y
j (yj ))

⎞

⎠

⎫
⎬

⎭

s.t.
∑

i∈I

xi ≤ X

∑

j∈J

yj ≤ Y

xi ≥ 0,∀i ∈ I

yj ≥ 0,∀j ∈ J

(1) 

where .N(i) denotes the set of outside sensors adjacent to inside sensor i. Here, the 
first sum over the outside neighbors j of i gives the flow that is captured at j and 
the second sum gives the flow that is not captured at j but is captured at i. 

Now, let us examine the given objective function. Clearly, it contains mixed 
nonlinear product terms of detection probabilities. Moreover, since there are no pure 
quadratic terms, we know that in general the objective function is neither convex, 
nor concave. We illustrate this in Example 2.1. 

Example 2.1 (Indefinite Objective Function) Suppose we have a single exterior 
sensor j preceding a single interior sensor i, as shown in Fig. 2. In this case, we 
would need to solve the following problem. 

.

max
xi,yj

{
Fj · D

y
j (yj ) + Dx

i (xi) · (Fj · (1 − D
y
j (yj )))

}

s.t. 0 ≤ xi ≤ X

0 ≤ yj ≤ Y

(2) 

Let us for a moment consider what would happen if .Dx
i (x) = x and .Dy

j (y) = y as 

shown in Fig. 3. In that case, .Dx
i and .Dy

j are differentiable everywhere. Thus, if we 
denote the objective function in problem (2) as  

. f i,j (xi, yj ) = Fj · D
y
j (yj ) + Dx

i (xi) · (Fj · (1 − D
y
j (yj )))

then we know 

Fig. 2 A model of layered defense showing a target with a single exterior sensor preceding a 
single interior sensor 
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Fig. 3 Linear detection rates at both the exterior and interior sensors of Fig. 2 

.

∇f i,j (xi, yj ) =
⎡

⎣
∂f i,j (xi ,yj )

∂xi

∂f i,j (xi ,yj )

∂yj

⎤

⎦

=
[

Fj (1 − D
y
j (yj ))

Fj (1 − Dx
i (xi))

]

=
[

Fj (1 − yj )

Fj (1 − xi)

]

≥
[

0
0

]

(3) 

Therefore the objective function (Fig. 4) is increasing everywhere in the feasible 
region. Thus, we know that we would get an optimal solution to problem (2) by  
setting .xi = X and .yj = Y . However, upon further inspection we can notice that if 
we attempted to solve the problem as a convex optimization problem, we would run 
into difficulties. The Hessian of the objective function has the following form: 

. ∇2f i,j (xi, yj ) =
[

0 −Fj

−Fj 0

]
(4) 

And its two eigenvalues are .λ1 = Fj and .λ2 = −Fj . Hence we know that the 
Hessian matrix associated with the quadratic terms is indefinite. 

The indefiniteness of the Hessian presents a major obstacle to solving the 
problem with standard solvers for quadratic programming. In our study, we tried 
solving numerous instances using different methods implemented in the MATLAB 
optimization toolbox. While in some cases we were able to produce consistent 
output, none of the examined methods were able to overcome the indefiniteness 
of the Hessian matrix for all possible values of the input parameters. This created 
the need for the development of an alternative solution method for the problem.
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Fig. 4 A plot of the objective function of (2) for the case of .Dx
i (xi) = xi , D

y
j (yj ) = yj and 

.Fj = 1. In this case three of the corners of the feasible region are optimal solutions 

3 Exhaustive Search Methods 

A standard approach to such problems is a brute force approach that fixes a 
resource partition mesh and enumerates all possibilities. This exhaustive search 
approach would be to discretize the resource space for each sensor into a number 
of subintervals. Then we could examine every possible resource allocation scenario 
and among all feasible cases select the one that maximizes the objective function 
value. However, this method would be computationally intractable even for trivial 
cases. For example, suppose that we have four inside sensors, and each of them 
is related to exactly two outside sensors. Further, suppose we split the parameter 
search space of each sensor into one hundred discrete intervals. Then we would 
need to evaluate the objective function a total of .1004+8 = 1024 times, which is 
clearly unacceptable unless a very large cluster is used. Moreover, if we considered 
a slightly larger case of fifteen interior sensors, each supporting a couple of outside 
perimeter sensors, then the number of cases explodes to .10015+30 = 1090, which 
exceeds the current estimates for the number of atoms in the universe.
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However, it is sufficient to discretize the parameter space for the interior sensors. 
Then, for each fixed set of values, we can find the optimal configuration of 
the exterior perimeter by solving a linear programming problem. If we take this 
approach, then the two above mentioned instances require, respectively, the solution 
of .108 and .1030 small linear programming problems. While this is a significant 
improvement, we are still subjected to the curse of dimensionality as the number 
of sensors in the interior perimeter increases. Fortunately, we can overcome this 
challenge. 

4 Dynamic Programming Method 

To illustrate the idea behind our method, we consider the following basic example. 
Suppose we would like to solve problem (2) for the case when .Dx

i and .Dy
j are 

general piecewise linear functions, as illustrated in Fig. 5. 
In that case, the objective function .f i,j (xi, yj ) of problem (2) is still continuous. 

Further, .f i,j (xi, yj ) is differentiable everywhere except at points corresponding to 
corner points of the detection functions .Dx

i and . Dy
j . Moreover, at points where 

.f i,j (xi, yj ) is differentiable, its gradient has the form 

.

∇f i,j (xi, yj ) =
[

∂f (xi ,yj )

∂xi
∂f (xi ,yj )

∂yj

]

=
[

ciFj (1 − D
y
j (yj ))

cjFj (1 − Dx
i (xi))

]

≥
[

0
0

]

(5) 

Fig. 5 Piecewise linear detection rates at both the exterior and interior sensors of Fig. 2
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for some constants .ci, cj ≥ 0. Thus, the optimal solution is again obtained by setting 
.xi = X and .yj = Y . 

Our solution method involves four main steps. 

Step 1 
For a fixed .ε > 0, we create a partition .Y = {0, ε, 2ε, . . . , Y } of the interval .[0, Y ], 
as well as a partition .X = {0, ε, 2ε, . . . , X} of the interval .[0, X]. 
Step 2 
For every pair of sensors .i, j such that .i ∈ I and .j ∈ N(i), we compute . T i,j (Xi, Yj )

for each .(Xi, Yj ) ∈ X × Y , where we use .T i,j (Xi, Yj ) to denote the maximum 
amount of detected illegal contraband when inner sensor i uses at most . Xi inner 
resources, and outer sensor j uses at most . Yj outer resources. Formally, we need to 
compute the optimal value of the following optimization problem: 

.T i,j (Xi, Yj ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
xi,yj

{
Fj · D

y
j (yj ) + Dx

i (xi) · (Fj · (1 − D
y
j (yj )))

}

s.t. 0 ≤ xi ≤ Xi

0 ≤ yj ≤ Yj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(6) 

We can solve an instance of problem (6) in .O(1) time by setting .xi = Xi and 
.yj = Yj . Thus, we can compute .T i,j (Xi, Yj ) for each .(Xi, Yj ) ∈ X × Y in 
.O(|X ||Y|). Hence, we can plot the objective function in (2) with arbitrary precision 
which would ultimately allow us to solve problem (1) with arbitrary precision (see 
Fig. 6). 

Step 3 
Now, suppose that instead of a single outside sensor j , we consider two outside 
sensors . j1 and . j2 that are both backed up by inner sensor i (see Fig. 7). We use 
.{j1, j2} to denote quantities that refer to the combined system with two outside 
sensors . j1 and . j2. For example, .T i,{j1,j2} denotes a table of optimal detection values 
for the combined system of inside sensor i and two outside sensors . j1 and . j2. 
Further, we also use .Xi,{j1,j2} and .Y i,{j1,j2} to denote the amount of inside and 
outside resources budgeted to the sensor system of inner sensor i, and outer sensors 
. j1 and . j2. Please recall that in Step 2, we computed the two tables of optimal 
values .T i,j1 and .T i,j2 (considering first the problem with only sensors .i, j1 and 
then the problem with only sensors .i, j2 (see Fig. 8)). Since they both share the 
same inner sensor, all we need to do in order to find the optimal detection value 
.T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) for the combined system is to determine the optimal 
way to allocate .Y i,{j1,j2} between sensor . j1 and . j2. Thus we have the problem of 
optimizing the following formulation:
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Fig. 6 A plot of the objective function of (2) for piecewise linear functions .Dx
i (xi) and . D

y
j (yj )

. T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
yi,j1 ,yi,j2

T i,j1
(
Xi,{j1,j2}, yi,j1

) + T i,j2
(
Xi,{j1,j2}, yi,j2

)

s.t.

yi,j1 + yi,j2 ≤ Y i,{j1,j2}

yi,j1 ∈ Y

yi,j2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7) 

Notice that even though we consider all different values of .y
i,j1
j , y

i,j2
j ∈ Y , 

problem (7) can be solved in time linear in the cardinality of . Y . This is accomplished 
by using two index variables initialized at the two ending points of the outside 
resource partition . Y . 

If we have three outside sensors .j1, j2, j3 corresponding to inside sensor i, then 
we can find their solution matrix .T i,{j1,j2,j3} as follows. Once we have computed
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Fig. 7 A network with two  
outside sensors (green and 
blue) and one inside sensor 
backing them both up 

Fig. 8 Finding separate solutions for inner sensor i with each outside sensor . j1 and . j2

the matrix .T i,{j1,j2} we use it as an input to Eq. (7), together with the matrix . T i,j3

to generate the solution matrix .T i,{j1,j2,j3}. By recursion, we can solve a problem 
instance that involves one inner sensor i and any number of outside sensors. We 
denote with . T i the solution table of optimal values corresponding to inner sensor i 
together with all of its adjacent outside sensors .j ∈ N(i). 

Step 4 
Suppose we are given two matrices, .T i1 and . T i2 , that correspond respectively to two 
inner sensors . i1 and . i2 with their adjacent outside sensors. In order to determine the 
optimal detection value .T {i1,i2}(X{i1,i2}, Y {i1,i2}) for the combined system, we need 
to find the optimal way to allocate .X{i1,i2}

i between .T i1 and . T i2 . Thus we consider 
the problem of optimizing the following,
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.T {i1,i2}(X{i1,i2}, Y {i1,i2}) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
xi1 ,xi2 ,yi1 ,yi2

T i1
(
xi1 , yi1

) + T i2
(
xi2 , yi2

)

s.t.

xi1 + xi2 ≤ X{i1,i2}

yi1 + yi2 ≤ Y {i1,i2}

xi1 , xi2 ∈ X

yi1 , yi2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8) 

We point out that problem (8) can be solved in .O(|X ||Y|) time. Finally, once we 
have computed .T {i1,i2}, we can proceed by recursion to solve problems involving an 
arbitrary number of interior and exterior sensors. 

5 Running Time 

We consider the running times of all of the four steps. 

Step 1: Creating the partitions takes .O(|X | + |Y|). 
Step 2: For every pair .i, j such that .i ∈ I, j ∈ N(i), we have to compute a matrix 

in .O(|X ||Y|) time. Thus, step 2 takes .O(|X ||Y||I ||J |). 
Step 3: For every .i ∈ I we perform step 3 .|N(i)| times, and every time we 

need to compute .|X ||Y| number of entries, each taking .O(|Y|). Thus the overall 
complexity of step 3 is .O(|X ||Y|2|I ||J |). 

Step 4: We need to execute this step .|I | − 1 times. Each of .|X ||Y| entries in 
the resulting matrix takes .O(|X ||Y|) time to compute. Thus, the computational 
complexity of step 4 is .O((|X ||Y|)2|I |). 
Since the four steps are performed sequentially, we know the overall running 

time of the dynamic programming method is .O(|X ||Y|2|I |(|J | + |X |)). 

6 Convergence 

So far, we have only considered discrete approximations of the optimal detection 
values. In this section we show that as the partition mesh .ε → 0, the values of the 
discrete approximation tables T converge to the true continuous optimal detection 
values t . 

Since, the discrete approximation is exact for the case of one inside and one 
outside sensor, we know 

.t i,j (Xi, Yj ) = T i,j (Xi, Yj ), ∀(Xi, Yj ) ∈ X × Y
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Consider the objective function .f i,j (·, ·) of the system consisting of inner 
sensor i and its external neighbor j . Since .f i,j is continuous, as well as quadratic 
everywhere except for a set of measure zero, we know that .f i,j is Lipschitz 
continuous and we denote its Lipschitz constant with .Li,j . If we choose . L ∈ R

such that 

. L = max
i∈I

j∈N(i)

Li,j

then L is a Lipschitz constant for all functions .f i,j . 
Suppose .i ∈ I and .j1, j2 ∈ N(i), . j1 �= j2. We use .ξ i,{j1,j2} to denote the error 

between the true optimal detection value .t i,{j1,j2}, and the discrete approximation 
.T i,{j1,j2}. We would use lower case .xi,j1 and .xi,j2 to denote the optimal way to split 
up the inside resources .Xi,{j1,j2} between .t i,j1 and .t i,j2 , while .yi,j1 and .yi,j2 denote 
the optimal way to split up the outside resources .Y i,{j1,j2} between .t i,j1 and .t i,j2 . 

On the other hand, we would use .Xi,j1 and .Xi,j2 to denote the optimal way to 
split up the inside resources .Xi,{j1,j2} between .T i,j1 and .T i,j2 , while .Y i,j1 and . Y i,j2

denote the optimal way to split up the outside resources .Y i,{j1,j2} between .T i,j1 and 
.T i,j2 . Before we proceed, we need to introduce the following notation. We use . 	x

to denote the point in . X that is closest to x from below, and we use .	y
 to denote 
the point in . Y that is closest to y from below. Similarly, we use .�x� to denote the 
point in . X that is closest to x from above, and we use .�y� to denote the point in . Y
that is closest to y from above. Then the discrete approximation error can be written 
as, 

. ξ i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)

= t i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)
− T i,{j1,j2}

(
Xi,{j1,j2}, Y i,{j1,j2}

)

= t i,j1
(
xi,j1 , yi,j1

)
+ t i,j2

(
xi,j2 , yi,j2

)

−T i,j1
(
Xi,j1 , Y i,j1

)
− T i,j2

(
Xi,j2 , Y i,j2

)

≤ t i,j1
(
xi,j1 , yi,j1

)
+ t i,j2

(
xi,j2 , yi,j2

)

−T i,j1
(
	xi,j1
, 	yi,j1


)
− T i,j2

(
	xi,j2
, 	yi,j2


)

= t i,j1
(
xi,j1 , yi,j1

)
+ t i,j2

(
xi,j2 , yi,j2

)

−t i,j1
(
	xi,j1
, 	yi,j1


)
− t i,j2

(
	xi,j2
, 	yi,j2


)

=
{
t i,j1

(
xi,j1 , yi,j1

)
− t i,j1

(
	xi,j1
, 	yi,j1


)}

+
{
t i,j2

(
xi,j2 , yi,j2

)
− t i,j2

(
	xi,j2
, 	yi,j2


)}
(9)
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Since we have .
{
t i,jk

(
xi,jk , yi,jk

) − t i,jk
(	xi,jk
, 	yi,jk
)} ≤ √

2εL for both . k =
1, 2 the bound 

.ξ i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)
≤ 2

√
2εL (10) 

follows. Now, we can also bound the error in the case of three outside sensors:

.

ξ i,{j1,j2,j3}
(
Xi,{j1,j2,j3}, Y i,{j1,j2,j3}

)
=

= t i,{j1,j2,j3}
(
Xi,{j1,j2,j3}, Y i,{j1,j2,j3}

)

− T i,{j1,j2,j3}
(
Xi,{j1,j2,j3}, Y i,{j1,j2,j3}

)

= t i,{j1,j2}
(
xi,{j1,j2}, xi,{j1,j2}

)
+ t i,j3

(
xi,j3 , yi,j3

)

− T i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)

− T i,j3
(
Xi,j3 , Y i,j3

)

≤ t i,{j1,j2}
(
xi,{j1,j2}, yi,{j1,j2}

)
+ t i,j3

(
xi,j3 , yi,j3

)

− T i,{j1,j2}
(
	xi,{j1,j2}
, 	yi,{j1,j2}


)

− T i,j3
(
	xi,j3
, 	yi,j3


)

≤ t i,{j1,j2}
(
xi,{j1,j2}, yi,{j1,j2}

)
+ t i,j3

(
xi,j3 , yi,j3

)

− t i,{j1,j2}
(
	xi,{j1,j2}
, 	yi,{j1,j2}


)

− t i,j3
(
	xi,j3
, 	yi,j3


)
+ 2

√
2εL

=
{
t i,j1

(
xi,j1 , yi,j1

)
− t i,j1

(
	xi,j1
, 	yi,j1


)}

+
{
t i,j2

(
xi,j2 , yi,j2

)
− t i,j2

(
	xi,j2
, 	yi,j2


)}

+ 2
√

2εL

≤ √
2εL + √

2εL + 2
√

2εL

= 4
√

2εL

(11) 

Proceeding by induction, we know that
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. ξ i ≤ 2
√

2(|J | − 1)εL,∀i ∈ I

since an inside sensor can have at most . |J | adjacent outside sensors. 
Now, suppose that .i1, i2 ∈ I, i1 �= i2. Then, 

.

ξ {i1,i2}
(
X{i1,i2}, Y {i1,i2}

)

= t {i1,i2}
(
X{i1,i2}, Y {i1,i2}

)
− T {i1,i2}

(
X{i1,i2}, Y {i1,i2}

)

= t i1
(
xi1 , yi1

)
+ t i2

(
xi2 , yi2

)
− T i1

(
Xi1 , Y i1

)
− T i2

(
Xi2 , Y i2

)

≤ t i1
(
xi1 , yi1

)
+ t i2

(
xi2 , yi2

)
− T i1

(
	xi1
, 	yi1


)
− T i2

(
	xi2
, 	yi2


)

≤ t i1
(
�xi1�, �yi1�

)
+ t i2

(
�xi2�, �yi2�

)

− T i1
(
	xi1
, 	yi1


)
− T i2

(
	xi2
, 	yi2


)

=
{
t i1

(
	xi1
, 	yi1


)
− T i1

(
	xi1
, 	yi1


)}

+
{
t i2

(
	xi2
, 	yi2


)
− T i2

(
	xi2
, 	yi2


)}

+
{
t i1

(
�xi1�, �yi1�

)
− t i1

(
	xi1
, 	yi1


)}

+
{
t i2

(
�xi2�, �yi2�

)
− t i2

(
	xi2
, 	yi2


)}

≤ 2
√

2 (|J | − 1) εL + 2
√

2 (|J | − 1) εL + 2
√

2εL

≤ 4
√

2 (|J |) εL

(12) 

We can also bound the error in the case of three inside sensors and all of their 
adjacent outside sensors: 

. ξ {i1,i2,i3}(X{i1,i2,i3}, Y {i1,i2,i3})

= t {i1,i2,i3}
(
X{i1,i2,i3}, Y {i1,i2,i3}

)
− T {i1,i2,i3}

(
X{i1,i2,i3}, Y {i1,i2,i3}

)

= t {i1,i2}
(
x{i1,i2}, y{i1,i2}

)
+ t i3

(
xi3 , yi3

)

−T {i1,i2}
(
X{i1,i2}, Y {i1,i2}

)
− T i3

(
Xi3 , Y i3

)

≤ t {i1,i2}
(
x{i1,i2}, y{i1,i2}

)
+ t i3

(
xi3 , yi3

)

−T {i1,i2}
(
	x{i1,i2}
, 	y{i1,i2}


)
− T i3

(
	xi3
, 	yi3


)
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≤ t {i1,i2}
(
�x{i1,i2}�, �y{i1,i2}�

)
+ t i3

(
�xi3�, �yi3�

)

−T {i1,i2}
(
	x{i1,i2}
, 	y{i1,i2}


)
− T i3

(
	xi3
, 	yi3


)

=
{
t {i1,i2}

(
	x{i1,i2}
, 	y{i1,i2}


)
− T {i1,i2}

(
	x{i1,i2}
, 	y{i1,i2}


)}

+
{
t i3

(
	xi3
, 	yi3


)
− T i3(	xi3
, 	yi3
)

}

+
{
t {i1,i2}

(
�x{i1,i2}�, �y{i1,i2}�

)
−t {i1,i2}

(
	x{i1,i2}
, 	y{i1,i2}


)}

+
{
t i3

(
�xi3�, �yi3�

)
−t i3(	xi3
, 	yi3
)

}

≤ 4
√

2|J |εL + 2
√

2(|J | −  1)εL + 2
√

2εL 

≤ 6
√

2(|J |)εL (13) 

Proceeding by induction, we know that . ξI the error of the discrete approximation 
for the entire set of internal sensors I and all of their adjacent outside sensors is 
bounded by 

. ξI ≤ 2
√

2|I ||J |εL

Therefore, 

.

lim
ε→0

ξI = t I (XI , Y I ) − T I (XI , Y I )

≤ lim
ε→0

2
√

2|I ||J |ε

= 0

(14) 

Hence, as .ε → 0 the discrete approximation .T I (XI , Y I ) converges to the true 
continuous optimal detection value .t I (XI , Y I ). 

7 The Case of an Adaptive Adversary 

So far, our model assumed a fixed flow of dangerous material on each pathway, 
and we have presented a method that would allow law enforcement officials to 
use current information on attacker behavior to maximize the amount of captured 
illegal or dangerous contraband. However, we can think of attackers as intelligent 
adversaries who would adjust their strategy once they observe the changes in site 
security. Therefore, the goal of a defensive strategy could be to make sure that no 
path leading into the site has a violation detection rate that is unreasonably low. For
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example, suppose we have an adaptive adversary who recognizes how much of a 
resource we use for sensors on each node and then chooses the path that minimizes 
the probability of detection. To defend against such an adversary we might seek to 
assign sensor resources so as to maximize the minimum detection rate on any path. 
Hence we face the following optimization challenge: 

.

max
x,y

min
i∈I

j∈N(i)

{
D

y
j (yj ) + Dx

i (xi)(1 − D
y
j (yj ))

}

s.t.
∑

i∈I

xi ≤ X

∑

j∈J

yj ≤ Y

xi ≥ 0,∀i ∈ I

yj ≥ 0,∀j ∈ J

(15) 

In order to solve this problem we can use a similar approach to the one discussed in
the previous section.

Steps 1 and 2 
These are identical to their counterparts described in Sect. 4, with .Fj = 1 for every 
outside sensor j . 

Step 3 
Once again, we denote by .T i,j the resulting table of values generated at Step 2. 
More specifically, we denote with .T i,j (Xi, Yj ) the optimal detection value that can 
be achieved by investing .(Xi, Yj ) ∈ X×Y resources of respectively, inner and outer 
resources. Then we consider the case of two outside sensors .j1, j2 that are backed 
up by inner sensor i. We can merge .T i,j1 and .T i,j2 into a single solution according 
to: 

.

T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
yi,j1 ,yi,j2

min
{
T i,j1

(
Xi,{j1,j2}, yi,j1

)
, T i,j2

(
Xi,{j1,j2}, yi,j2

)}

s.t.

yi,j1 + yi,j2 ≤ Y i,{j1,j2}

yi,j1 ∈ Y

yi,j2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16) 

where .T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) is the optimal detection value for the combined 
system.
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Again, if we proceed by induction, we can generate an optimal value table for a 
problem instance that involves one inner sensor i, and an arbitrary number of outside 
sensors. We denote such a table by . T i . 

Step 4 
Consider two matrices .T i1 and .T i2 that correspond to respectively inner sensors 
. i1 and . i2 with all of their adjacent outside sensors. We could again merge the two 
solutions into a single global solution according to the following rule: 

. T {i1,i2}(X{i1,i2}, Y {i1,i2}) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
xi1 ,xi2 ,yi1 ,yi2

min
{
T i1

(
xi1 , yi1

)
, T i2

(
xi2 , yi2

)}

s.t.

xi1 + xi2 ≤ X{i1,i2}

yi1 + yi2 ≤ Y {i1,i2}

xi1 , xi2 ∈ X

yi1 , yi2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17) 

where .T {i1,i2}(X{i1,i2}, Y {i1,i2}) denotes the optimal value for the combined system 
that employs internal sensors . i1 and . i2, and all of their outside neighbors. 

Once again, if we have a third branch consisting of inside sensor . i3 and its outside 
neighbors, then we can use .T {i1,i2} and .T i3 as inputs to Eq. (17) and find the table 
of optimal values .T {i1,i2,i3} for the combined system consisting of inside sensors 
.i1, i2, i3, and all of their adjacent outside sensors. Proceeding by induction, we know 
that even if we have an adaptive adversary, we can solve problems involving an 
arbitrary number of interior and exterior sensors, as well as sensor detection curves 
specified by concave increasing piecewise linear functions. 

8 Computational Results 

In this section we present computational results for the methods developed above. 
The experiments were performed on an AMD Phenom X4 9550 workstation with 
6GB of DDR2 RAM. We consider two different system configurations, and for each 
of them we provide plots of the objective function value for both the original and 
adaptive adversary models. 

Example 8.1 In this example we consider an inner layer consisting of four sensors, 
one with three adjacent outside sensors (indices 1, 2, 3), a second with two adjacent 
outside sensors (indices 4, 5), a third with two adjacent outside sensors (indices 6, 7), 
and a fourth with two adjacent outside sensors (indices 8, 9). For each inside sensor 
.i ∈ I , we specify .Dx

i (x) = min{0.2x, 0.4 + 0.1x}. Further, for the first outside
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Fig. 9 Solution maximizing the expected amount of captured contraband for a range of interior 
and exterior budgets for Example 8.1 

sensor we use .D
y
j1

(y) = min{0.3y, 0.3+0.1y, 0.5+0.05y}, and for outside sensors 

of index .j = 2, 3, . . . , 9, we use .D
y
j (y) = min{0.3y, 0.3 + 0.1y}. In addition, all 

outside sensors have exactly 1 unit of incoming flow. Figure 9 gives the solution 
maximizing the expected amount of captured contraband for a range of interior and 
exterior budgets, i.e., the solution to the first problem. The solution matrix includes 
10,302 distinct points and the computation took 117 seconds. 

We can also calculate the adaptive adversary solution maximizing the minimum 
probability of capturing contraband along all paths for a range of interior and 
exterior budgets. The solution shown in Fig. 10 includes 40,401 distinct points and 
the computation took 3102 seconds (52 minutes). 

Example 8.2 In this example, we modify Example 8.1 so that all the outside sensors 
have exactly 1 unit of incoming flow except for outside sensors 1 and 9 which 
have 10 units of incoming flow. Figure 11 shows the optimal objective values of 
the maximized amount of captured contraband for a range of interior and exterior 
budgets. The solution table includes 10,302 distinct points, and the computation 
took 119 seconds. 

In this example we only changed the flow values of Example 8.1. For this reason, 
we do not need to compute a new adaptive adversary solution, as it would be 
identical to the one for Example 8.1. Naturally, this illustrates the robustness of 
the adaptive adversary formulation compared to its original counterpart.
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Fig. 10 Adaptive adversary solution maximizing the minimum probability of capturing contra-
band along all paths for a range of interior and exterior budgets for Example 8.1 

Fig. 11 Solution maximizing the expected amount of captured contraband for a range of interior 
and exterior budgets for Example 8.2 

9 Closing Remarks 

We have considered the problem of determining the optimal resource allocation for 
layered security. A computational method for the maximization of captured contra-
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band and an adaptive adversary approach for the maximization of the worst case 
probability of detection have been developed. Both methods are computationally 
tractable and can be applied to non-trivial practical problems. 

We have a great deal more that we can do in the future. One thing is to consider 
both legal and illegal flow, which we also refer to as respectively good and bad 
units. Hence, in addition to detecting bad units we could consider false positive 
decisions for each sensor and adopt a risk-averse optimization approach [3]. Another 
possible direction would be attempting to write the problem as a large game and use 
approximation methods similar to the ones developed by Grigoriadis and Khachian 
[10]. Alternatively, we could look into interdiction on planar graphs methods similar 
to the ones developed by Zenklusen [18, 19]. 

Still another approach is to follow the applications of Stackelberg games that 
have been used in pioneering defensive approaches at the nation’s airports, ports, 
and in applications by the Federal Air Marshals Service, US Coast Guard, etc. (see 
[11, 15]). In a Stackelberg game between an attacker and a defender, the defender 
(security) acts first. The attacker can observe the defender’s strategy and choose 
the most beneficial point of attack. The challenge is to introduce some randomness 
in the defender’s strategy to increase the uncertainty on the part of the attacker. 
Bayesian Stackelberg games do exactly that. Layered defense makes this into a new 
kind of Stackelberg game to analyze, one with two rounds, one involving the outer 
layer and one involving the inner layer based on results at the outer layer. We can 
look both at nonrandomized and randomized strategies for the defender. 

There are many other directions in which this work could go. Even with our 
current model, we have not yet developed practical methods to handle more than 
two layers of defense. There are also many variations on our model that could 
be quite interesting. For example, we could consider a fixed resource limit that 
the defender could allocate between inner and outer layers. Then, we could allow 
adaptive redistribution of resources across layers and across time (see [2, 4]). 

Disclaimer The views and conclusions contained in this document are those of the authors and 
should not be interpreted as necessarily representing the official policies, either expressed or 
implied, of the U.S. Department of Homeland Security. 
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3. Asamov, T., Ruszczyński, A.: Time-consistent approximations of risk-averse multistage 
stochastic optimization problems. Math. Program. 153(2), 459–493 (2015) 

4. Asamov, T., Salas, D.F., Powell, W.B.: SDDP vs. ADP: the effect of dimensionality in 
multistage stochastic optimization for grid level energy. storage. Preprint. arXiv:1605.01521 
(2016) 

5. Boros, E., Elsayed, E.A., Kantor, P.D., Roberts, F., Xie, M.: Optimization problems for port-
of-entry detection systems. In: Intelligence and Security Informatics, pp. 319–335. Springer 
(2008) 

6. Boros, E., Fedzhora, L., Kantor, P.B., Saeger, K., Stroud, P.: A large-scale linear programming 
model for finding optimal container inspection strategies. Naval Res. Logist. 56(5), 404–420 
(2009) 

7. Boros, E., Goldberg, N., Kantor, P.B., Word, J.: Optimal sequential inspection policies. Ann. 
Oper. Res. 187(1), 89–119 (2011) 

8. Carpenter, T., Cheng, J., Roberts, F., Xie, M.: Sensor management problems of nuclear 
detection. In: Safety and Risk Modeling and Its Applications, pp. 299–323. Springer (2011) 

9. Elsayed, E.A., Young, C.M., Xie, M., Zhang, H., Zhu, Y.: Port-of-entry inspection: sensor 
deployment policy optimization. IEEE Trans. Autom. Sci. Eng. 6(2), 265–276 (2009) 

10. Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate max-min 
resource sharing for structured concave optimization. SIAM J. Optim. 11(4), 1081–1091 
(2001) 

11. Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., Ordóñez, F.: Software 
assistants for randomized patrol planning for the LAX airport police and the federal air marshal 
service. Interfaces 40(4), 267–290 (2010) 

12. Madigan, D., Mittal, S., Roberts, F.: Sequential decision making algorithms for port of entry 
inspection: Overcoming computational challenges. In: Intelligence and Security Informatics, 
2007 IEEE, pp. 1–7. IEEE (2007) 

13. Madigan, D., Mittal, S., Roberts, F.: Efficient sequential decision-making algorithms for 
container inspection operations. Naval Res. Logist. (NRL) 58(7), 637–654 (2011) 

14. Pita, J., Jain, M., Marecki, J., Ordóñez, F., Portway, C., Tambe, M., Western, C., Paruchuri, 
P., Kraus, S.: Deployed ARMOR protection: the application of a game theoretic model for 
security at the Los Angeles International Airport. In: Proceedings of the 7th International Joint 
Conference on Autonomous Agents and Multiagent Systems: Industrial Track, pp. 125–132. 
International Foundation for Autonomous Agents and Multiagent Systems (2008) 

15. Sandler, T., Arce, D.G.: Terrorism: a game-theoretic approach. In: Handbook of Defense 
Economics, vol. 2, pp. 775–813 (2007) 

16. Stroud, P.D., Saeger, K.J.: Enumeration of increasing boolean expressions and alternative 
digraph implementations for diagnostic applications. In: Proceedings, vol. 4, pp. 328–333 
(2003) 

17. Young, C.M., Li, M., Zhu, Y., Xie, M., Elsayed, E.A., Asamov, T.: Multiobjective optimization 
of a port-of-entry inspection policy. IEEE Trans. Autom. Sci. Eng. 7(2), 392–400 (2010) 

18. Zenklusen, R.: Extensions to network flow interdiction on planar graphs. Preprint. 
arXiv:0801.1737 (2008) 

19. Zenklusen, R.: Network flow interdiction on planar graphs. Discrete Appl. Math. 158(13), 
1441–1455 (2010)




